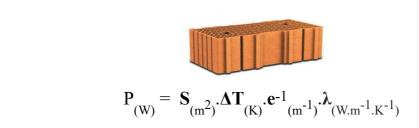
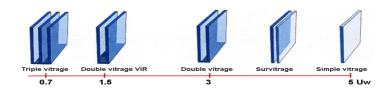

Thème: Votre consommation énergétique

Fiche n°2 : Les échanges de chaleur

I Échange d'énergie par les ouvertures, les sols, les murs ou le toit


Quand entre deux surfaces d'un corps il y a une différence de température, il existe alors un transfert d'énergie à travers celui-ci. Ce transfert va du corps chaud vers le corps froid. Pour un mur plein, c'est un transfert de conduction thermique.

Pour une fenêtre c'est de la conduction, du rayonnement (transparence à la lumière) ou de la convection (agitation d'un gaz). Certains vitrages sont optimisés pour limiter la conduction (double et triple vitrage), la convection (gaz lourd) et/ou le rayonnement (couche opaque aux infrarouges). Une fenêtre est donc, à épaisseur égale, moins isolante qu'un isolant plein correct. On peut calculer la puissance de transfert de chaleur à travers ces parois.



Ce transfert d'énergie est, dans tous les cas, proportionnel à la surface d'échange (S) et à la différence de température (ΔT) entre les deux surfaces de la paroi. Pour ce transfert, on considère un facteur caractérisant les propriétés plus ou moins conductrices du corps étudié (λ ou U). L'épaisseur des parois joue donc un rôle également. Plus un matériau est épais et plus la puissance de transfert est faible. Cette épaisseur est déjà dans le facteur U des fenêtres mais pas dans le facteur λ des parois pleines.

Puissance de transfert thermique entre deux systèmes

Pour un mur, un plafond ou un sol d'épaisseur e avec un isolant donné

$$P_{(W)} = S_{(m^2)}.\Delta T_{(K)}.U_{w_{(W.m^{-2}.K^{-1})}}$$
 Pour **une fenêtre** qui est un matériau **composite** donné

II De la puissance à l'énergie.

La température extérieure varie en fonction de la saison. Il faudrait donc faire un calcul d'énergie chaque jour et même chaque heure avec la relation E = P. Δt pour les murs et les fenêtres. Cependant pour simplifier le problème il existe les **DJU** (degrés jour unifiés). Les météorologues font chaque jour de l'année la différence ΔT ($T_{habitation}$ - $T_{extérieure}$) et les additionnent durant une saison complète de chauffage (232 jours). Ils font ainsi des moyennes. On peut ainsi utiliser les relations pour **une journée équivalente à une saison**. Il suffit de remplacer $\Delta T_{(K)}$ par les $DJU_{(K)}$ et $\Delta t_{(s)}$ par la valeur en seconde d'une journée. Les DJU en Haute-Savoie sont de l'ordre de 2 800 K.

On obtient alors:

Énergie transférée entre la maison et l'extérieur par une surface opaque

$$\mathbf{E}_{(J)} = \mathbf{S}_{(m^2)} \cdot \Delta \mathbf{T}_{(K)} \cdot \mathbf{e}^{-1}_{(m^{-1})} \cdot \lambda_{(W.m^{-1}.K^{-1})} \cdot \Delta \mathbf{t}_{(s)}$$
devient pour une saison avec $\Delta \mathbf{t}_{(s)} = 86\,400\,\mathrm{s}$

$$\mathbf{E}_{(J)} = \mathbf{S}_{(m^2)} \cdot \mathbf{DJU}_{(K)} \cdot \mathbf{e}^{-1}_{(m^{-1})} \cdot \lambda_{(W.m^{-1}.K^{-1})} \cdot \Delta \mathbf{t}_{(s)}$$

Énergie transférée entre la maison et l'extérieur par une surface transparente

$$\mathbf{E}_{(J)} = \mathbf{S}_{(m^2)} \cdot \Delta \mathbf{T}_{(K)} \cdot \mathbf{U}_{\mathbf{w}}_{(\mathbf{W}.\mathbf{m}^{-2}.\mathbf{K}^{-1})} \cdot \Delta \mathbf{t}_{(s)}$$
devient pour une saison avec $\Delta \mathbf{t}_{(s)} = 86400 \text{ s}$

$$\mathbf{E}_{(J)} = \mathbf{S}_{(m^2)} \cdot \mathbf{DJU}_{(K)} \cdot \mathbf{U}_{\mathbf{w}}_{(\mathbf{W}.\mathbf{m}^{-2}.\mathbf{K}^{-1})} \cdot \Delta \mathbf{t}_{(s)}$$

III Caractéristiques thermiques des différents matériaux isolants les plus utilisés.

Conductivité thermique λ des isolants courants pour les parois pleines				
Matériaux	Laine minérale	Laine de bois	Polystyrène	Polyuréthane
λ	0,032 W.m ⁻¹ .K ⁻¹	0,038 W.m ⁻¹ .K ⁻¹	0,032 W.m ⁻¹ .K ⁻¹	0,024 W.m ⁻¹ .K ⁻¹

Coefficient d'isolation Uw pour les fenêtres				
Fenêtres	Simple vitrage	Double vitrage ancien	Double vitrage moderne	Triple vitrage
Uw	5 W.m ⁻² .K ⁻¹	3 W.m ⁻² .K ⁻¹	1,4 W.m ⁻² .K ⁻¹	0,7 W.m ⁻² .K ⁻¹

IV Questionnaire

Ω 1	/5
$\mathbf{O}_{\mathbf{I}}$	1 1 1

- Quelle est la qualité de vos fenêtres ?
- Quelle est la surface de vos fenêtres ?

.....

- Quel est l'isolant recouvrant vos murs et son épaisseur ?
- Quelle est la surface de vos murs ? De votre sol ?
- Quel est l'isolant recouvrant votre toit ou votre plafond sous les combles (si absence de chauffage) et son épaisseur ? Et pour le sol ?

♠ En l'absence d'isolation on prendra 1 cm de laine minérale pour les murs ou le toit et 2 cm de laine minérale pour les sols.

- ♠ Une porte sera considérée comme une fenêtre simple vitrage si non isolée et en double vitrage si isolée.
- ♠ L'énergie perdue par le sol sera minorée de 30 % (le sol étant moins froid sous la maison que l'air extérieur)

V Exemple de bilan

Paul habite une maison avec les caractéristiques suivantes. Il a 20 m² de fenêtres en double vitrage moderne. Il a 100 m² de murs avec l'extérieur recouvert de 10 cm de polystyrène. Il a un plafond isolé sous la toiture de 100 m² avec 20 cm de laine minérale. Son sol est isolé par 6 cm de polystyrène sur son vide sanitaire (en contact avec l'air extérieur). Il a une porte simple.

	Toit	Fenêtres	Porte	Murs	Sol
Surface	100 m ²	20 m ²	1,5 m ²	100 m ²	100 m ²
Epaisseur (m)	0,2			0,1	0,06
λ (W.m ⁻¹ .K ⁻¹)	0,032			0,032	0,032
Uw (W.m ⁻² .K ⁻¹)		1,4	5		
Pondération	1	1	1	1	0,7
Chaleur transférée* (GJ)	3,87 GJ	6,8 GJ	1,8 GJ	7,74 GJ	9,03 GJ
Chaleur transférée (kWh)	1075 kWh	1 882 kWh	504 kWh	2 150 kWh	2 509 kWh
Total			8 120 kWh		

^{*} de l'habitation vers l'extérieur

Bilan : 8120 kWh d'énergie thermique ont été transférés de la maison vers le milieu extérieur durant une saison de chauffage. Les murs, les ouvertures et le sol sont les principaux responsables.

I5	/5
----	----

VI Bilan des transferts énergiques à travers les surfaces de votre habitation

Faire votre bilan complet